Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aerosols in Jupiter’s stratosphere form intriguing polar hoods, which have been investigated by ultraviolet cameras on Cassini and the Hubble Space Telescope. Transient, concentrated dark ovals of unknown origin have been noted within both the northern and southern polar hoods. However, a systematic comparative study of their properties, which could elucidate the physical processes active at the poles, has not yet been performed due to infrequent observations. Using 26 global maps of Jupiter taken by Hubble between 1994 and 2022, we detected transient ultraviolet-dark ovals with a 48% to 53% frequency of occurrence in the south. We found the southern dark oval to be 4 to 6 times more common than its northern counterpart. The southern feature is an anticyclonic vortex and remains within the auroral oval during most of its lifetime. The oval’s darkness is consistent with a 20 to 50 times increase in haze abundance or an overall upward shift in the stratospheric haze distribution. The anticyclonic vorticity of the dark oval is enhanced relative to its surroundings, which represents a deep extension of the higher-altitude vortices previously reported in the thermosphere and upper stratosphere. The haze enhancement is probably driven by magnetospheric momentum exchange, with enhanced aerosols producing the localized heating detected in previous infrared retrievals.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract The restoration of symmetries is one of the most fascinating properties of turbulence. We report a study of the emergence of isotropy in the Gross-Pitaevskii model with anisotropic forcing. Inspired by recent experiments, we study the dynamics of a Bose-Einstein condensate in a cylindrical box driven along the symmetry axis of the trap by a spatially uniform force. We introduce a measure of anisotropy A ( k , t ) defined on the momentum distributions , and study the evolution of A ( k , t ) and as turbulence proceeds. As the system reaches a steady state, the anisotropy, large at low momenta because of the large-scale forcing, is greatly reduced at high momenta. While exhibits a self-similar cascade front propagation, A ( k , t ) decreases without such self-similar dynamics. Finally, our numerical calculations show that the isotropy of the steady state is robust with respect to the amplitude of the drive.more » « less
-
Abstract The motion of quantized vortices is responsible for many intriguing phenomena in diverse quantum-fluid systems. Having a theoretical model to reliably predict the vortex motion therefore promises a broad significance. But a grand challenge in developing such a model is to evaluate the dissipative force caused by thermal quasiparticles in the quantum fluids scattering off the vortex cores. Various models have been proposed, but it remains unclear which model describes reality due to the lack of comparative experimental data. Here we report a visualization study of quantized vortex rings propagating in superfluid helium. By examining how the vortex rings spontaneously decay, we provide decisive data to identify the model that best reproduces observations. This study helps to eliminate ambiguities about the dissipative force acting on vortices, which could have implications for research in various quantum-fluid systems that also involve similar forces, such as superfluid neutron stars and gravity-mapped holographic superfluids.more » « less
-
Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)The first scientific observations with adaptive optics (AO) at W. M. Keck Observatory (WMKO) began in 1999. Through 2023, over 1200 refereed science papers have been published using data from the WMKO AO systems. The scientific competitiveness of AO at WMKO has been maintained through a continuous series of AO and instrument upgrades and additions. This tradition continues with AO being a centerpiece of WMKO’s scientific strategic plan for 2035. We will provide an overview of the current and planned AO projects from the context of this strategic plan. The current projects include implementation of new real-time controllers, the KAPA laser tomography system and the HAKA high-order deformable mirror system, the development of multiple advanced wavefront sensing and control techniques, the ORCAS space-based guide star project, and three new AO science instruments. We will also summarize steps toward the future strategic directions which are centered on ground-layer, visible and high-contrast AO.more » « less
An official website of the United States government

Full Text Available